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LETTER TO THE EDITOR 

Non-unitarity in rational conformal field theories 

Daniel Altschuler 
Service de Physique ThCorique de Saclayt, F-91911 Gif-sur-Yvette CCdex, France 

Received 7 February 1989 

Abstract. We study the classification problem of rational conformal field theories without 
imposing unitarity. The only constraint which remains is that of modular covariance. This 
can be imposed by several related but not always equivalent conditions. We choose what 
we think is the most natural one, namely that the characters transform according to a 
finite-dimensional representation of the modular group. Our main result is that, in the 
case where the chiral algebra is reduced to the Virasoro algebra alone, the set of modular 
covariant theories contains only the minimal models of Belavin, Polyakov and Zamolod- 
chikov. 

It is certainly true that unitarity is a cornerstone of quantum theories, and in the case 
of two-dimensional conformal field theories (CFT) it has been exploited with great 
success [l] as one of the main constraints on the set of consistent models. However 
in certain circumstances it is necessary to relax this criterion and allow for non-unitarity, 
e.g. to be able to consider some models of statistical mechanics such as the Lee-Yang 
singularity [2]. The point of view of the present paper is that unitarity is not a very 
natural condition when undertaking the task of classifying rational CFT. Indeed the 
recent results in this direction [3] never depend on unitarity. 

The only constraint which remains is then that the theory be well defined on a 
two-dimensional Riemann surface, which should reflect itself into nice modular trans- 
formation properties. Here we will restrict ourselves to tori for simplicity. Let us be 
more precise and start by defining the CFT we have in mind. First we fix an infinite- 
dimensional algebra A (having the Virasoro algebra vir as a subalgebra) of operators 
in a vector space E, consisting of a jinite number of irreducible representations W,, 
i = 0, 1, . . . , N, of A (A-modules). This defines what we will call a (chiral) rational 
CFT. Let c be the central charge of vir acting on E, T the modular parameter with 
Im T >  0 and q = exp(2n i~ ) ,  then the character of Wi is the holomorphic function 

xi(.) = q-c’24TrwrqLo. 

The modular group G = SL,(Z) acts on T by the substitutions 

a r + b  
CT+ d 

T H g T = -  

and thus it acts naturally on the characters 

X ~ ( T ) H  (gXi ) ( r )  =x i (g- ‘T) .  

Further, let V denote the vector space spanned by the xI. 

t Laboratoire de I’Institut de Recherche Fondamentale du Commissariat B I’Energie Atomique. 
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The problem we want to study is to classify all rational cm which satisfy the 
following condition: 

(M) The action of G on V defined by (3) is a linear representation. 

This condition is satisfied by all known unitary and non-unitary rational cm. 
We shall give a solution to this problem in two cases, when A consists of the 

Virasoro algebra only, and when A is the N = 1 superconformal algebra. The extension 
of our study to the more complicated case of affine Kac-Moody algebras? is currently 
under investigation [6]. Our interest in this problem arises from closely related 
considerations in a paper of Mac and Wakimoto [4]. In this letter we shall study the 
differences between (M) and the definitions of [4], then we shall give the solution to 
the classification problem in the two cases mentioned above and finally we shall draw 
some conclusions. 

In their paper, Kac and Wakimoto [4], instead of (M), choose the condition 

( M l )  The xi are modular functions for the principal congruence sub- 

This condition is also met by all known examples. We shall find it instructive to discuss 
yet another condition: 

(M2) The xi are modular functions for some invariant subgroup H of 

Here we recall that a modular function for a subgroup H c G is an invariant under 
the substitutions g7 for all g E H. The principal congruence subgroup of level n is the 
invariant subgroup 

group r(n) for some positive integer n. 

G of finite indexS. 

T(n) ={gEGIg= 1 mod n} (4) 

where the congruence is elementwise. It is known [7] that there exists an infinite 
number of invariant subgroups H which do not contain any T(n). These are called 
noncongruence groups. 

Clearly ( M l )  implies (M2). However, in general one cannot establish that ( M l )  
or (M2) implies (M) or the converse, or that (M2) implies ( M l ) .  Let us discuss now 
in more detail why we cannot prove these statements at least for the moment, without 
first solving the classification problems associated with the conditions (M), ( M l )  and 

( M l )  or ( M 2 ) 3 ( M ) .  H being an invariant subgroup of finite index in G, let MH 
be the vector space of modular functions for H. MH is finite dimensional. If x, E MH 
and g E G then gxi lies in MH again, but we do not know if its lies in V .  

( M 2 ) J ( M l ) .  The q-expansions of the characters must have integral coefficients. 
When H = r( n) one knows that there exists a basis of MH all of whose elements satisfy 
this constraint. However when H is a non-congruence group, examples are known for 
which such a basis does not exist [8]. The question is: is this true for all non-congruence 
groups? 

( M a .  

t Note that in this case the characters will be functions not only of T but also of z, which is in a Cartan 
subalgebra and transforms non-trivially under the modular group. For a non-unitary representation one 
cannot put z = 0, because in general the characters are undefined at this particular value. Nevertheless the 
problem of classifying modular covariant representations and their non-specialised characters has a well 
defined mathematical, if not physical, meaning. See [4,5]. 
$ Finite index means that G/H is finite. 
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( M ) J ( M 2 ) .  This is equivalent to saying that the kernel of the representation is 
of finite index in G. This would follow from a conjecture of Grothendieck [9]t on 
finiteness of the monodromy groups in systems of linear differential equations. 

We shall now prove the following theorem. 

Theorem. Let A be the Virasoro algebra. Then the set of all rational CFT obeying (M) 
coincides with the minimal models of BPZ [lo], i.e. Wi are irreducible representations 
with c and h given by 

where p and q are positive, relatively prime integers and r, s are integers such that 

l s r s q - 1  and 1 s s s p -  1. (7) 

Before going on to the proof, let us comment on the significance of this result. A 
particular case of the theorem has been known for a quite a while: if one adds to (M) 
the assumption of unitarity, then one gets the unitary minimal models obtained by 
putting q = p + l  in ( 5 )  and (6). This unitary classification is due to [ l ,  111 and to 
Cardy [12] who showed that a unitary rational CFT has c < 1. The theorem implies 
that Cardy’s result also holds for non-unitary rational cm. 

Proof of the theorem. Let us concentrate on one particular irreducible character 
x =xi for some i. If x is to belong to a finite-dimensional representation of G, the 
orbit GX should span a finite-dimensional space. Denote by Y, the character of a 
Verma module: 

vr = q r / v ( T )  (8) 

where r = h - ( c  - 1)/24. From the works of Feigin and Fuchs [13] we learn that the 
irreducible characters fall into three types. 

(I) Those which are finite linear combinations of Verma module characters. 
(Ha) Those which are infinite linear combinations of Verma modules with c, h 

given by ( 5 )  and (6) but r, s outside the rectangle (7). 
(IIb)  The characters of the minimal BPZ models mentioned in the statement of the 

theorem. These are also infinite linear combinations of Verma modules. 
We now prove that the orbit GX spans an infinite-dimensional space except in case 

(IIb). This will follow from the fact that Gv, is infinite dimensional. To show that, 
consider the subgroup B consisting of elements g, where n is an integer and 

€!,=(A ;). (9) 

One computes the action of B which is given, up to a constant phase, by 

g,v,(.) = (1 - n ~ ) - ’ ” v ( ~ ) - ’  e x p [ 2 ~ i r ~ / ( 1  -n.)]. (10) 

The functions g,v, for n E B and arbitrary r are linearly independent, which proves 
our claim. Therefore case (I)  is already excluded. 

t I thank A Kontsevitch for pointing out this reference to me. 



L328 Letter to the Editor 

For case (IIa),  Di Francesco et a2 E141 have explicitly written down the character 
formula. Here the relevant information is that 

x = finite sum of the Y + a modular function (11) 

where the modular function is for a congruence subgroup. The orbit of the modular 
function is, of course, finite, but the orbit of the first term is infinite as in (I), so this 
case is also excluded. 

So we are left with the representations of type (IIb). But it is known [15] that their 
characters transform according to (M). This concludes the proof of our theorem. 

One can also see that the only irreducible characters of the Virasoro algebra which 
are modular functions are those of type (IIb). Thus in this case the conditions (M), 
(MI)  and ( M 2 )  are equivalent. In [4] the statement of the theorem with condition 
(M) replaced by (Ml ) ,  and a supersymmetric analogue (see below) are given without 
proof. 

When A is a superconformal N = 1 algebra, we have an analogue of the theorem, 
which states that the set of all rational superconformal field theories is the supersym- 
metrised version of the BPZ minimal models, i.e. the Wi are irreducible representations 
with 

( r p  - qs)* - ( p  - q)2  
8Pq 

1 - 2E +- 
16 ' 

h =  

Here E = 1 (respectively 0) if A is the Neveu-Schwarz (respectively Ramond) algebra, 
p = q mod 2,  ( p  - q ) / 2  and q are relatively prime, r - s = (1 - 2 ~ )  mod 2 and r, s are 
as in (7). The proof of this is the same as in the ordinary (Lie) case, using character 
formulae from [16]. However, instead of B one has to use the subgroup of elements 
g, with even n. Note that the unitary representations in ( 1 2 )  and (13) are obtained 
when q = p + 2 .  

We have a rather simple method for classifying all rational CFT with a fixed chiral 
algebra A. It assumes the knowledge of the modular transformation properties of all 
irreducible characters of A. (This means that it is probably impractical for all but the 
simplest extended algebras, for a representation theory has so far not been worked 
out in most cases, e.g. the W algebras [17].) Then the characters which are singled 
out are those which belong to finite-dimensional orbits of the modular group. The 
example of purely conformal (Virasoro) theories has been completely solved above, 
thereby giving a somewhat different perspective on the particular place occupied by 
the minimal BPZ theories among the other CFT. 

But surely the deeper and more beautiful questions, which we have barely mentioned 
in this letter, i.e. concerning the coefficients of congruence and non-congruence modular 
functions and on the validity of Grothendieck's conjecture, should be studied both for 
their mathematical interest and their applications to CFT. 

I wish to thank C Itzykson, J Lacki, P Zaugg and J-B Zuber for helpful remarks and 
discussions. 
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